

Benefits of guidelines

- Limit variations in service delivery among providers, hospitals, and geographical regions, improving the consistency of care
- Reduce inappropriate care, either overuse or underuse of services
- To make objective the intrinsic desire of healthcare professionals to offer, and of patients to receive, the best care possible
- Improve the quality of clinical decisions
- Provide authoritative recommendations that reassure practitioners about the appropriateness of their treatment policies (legal implications)

European Association of Perinatal Medicine "Study Group on "Preterm birth"

Guidelines for the management

of spontaneous preterm labour

G. C. Di Renzo (Italy) L. Cabero Roura (Spain) F Facchinetti, C Houbinont, V Radzinsky, M Wielgos, A Mikhailov, H Helmer, R Lamont, N Papantoniou, B Jacobsson, A Shennan, J Stener Jorgensten, GH Visser

J Mat Fet Neon Med 2017

Internation IGO	onal Federation of Gynecology and Obstetrics Group on Good Practice in Maternal-Fetal Medic
Chair: G C Di Renzo	Expert members ex officio:
	C Fuchtner, FIGO
Expert members:	M Hod, EAPM
E Fonseca, Brasil	GH Visser, SM Committee
E Gratacos, Spain	E Castelazo, CBET Committee
S Hassan, USA	L Cabero, GDM WG
M Kurtser, Russia	V Berghella, SMFM
F Malone, Ireland	Y Ville, ISUOG
S Nambiar, Malaysia	M Hanson, DOHaD
M Sierra, Mexico	PP Mastroiacovo, Clearinghouse
K Nicolaides, UK	JL Simpson, March of Dimes
II Vana China	

THE ETIOLOGICAL SCENARIO

What Initiates Labor?

- Genetic factors
- Dysfunctional energy metabolism (mother and fetus) – mitochondria, diet
- Inflammatory / Infectious etiologies
- Fetal or maternal signals that initiate labor
- Anatomic changes in uterus, cervix or placenta

PREDICTION = RISK FACTORS + MARKERS

RISK FACTORS

Risk factors: individual socio-economic and behavioural	Association with sPTB	Intervention possible
Black	•	No
Young mother (<15-19 yrs)	•	Yes
Lives alone	•	No
Domestic violence	• •	Yes
Low socioeconomic status	• •	?
Stress, depression, life events	• •	Yes
Hard work	••	Yes
No or inadequate prenatal care	• •	Yes
Smoking, cocaine	•	Yes
Alcohol, caffeine	•	
Low maternal weight before pregnancy	•	No
Weight gain in pregnancy	•	
Short	•	No

Gynaecological and obstetric history	Association with sPTB	Intervention possib
Preterm delivery or second trimester pregnancy loss	•••	Yes
Previous cone biopsy	••	?
Mullerian abnormality	•	No
Parity	•	
Short interval between the two last pregnancies	•	?
Family history (genetic factors)	•	No
Fibroids		
Scarred uterus		

Preterm Birth and Family History

- Data from linked database of birth certificates of two generational cohorts
- Risk of PTD for preterm mothers was higher than those that had been born at term (OR 1.18)
- If preterm mother delivered <30 weeks OR increased to 2.38

Gender aspects of preterm birth

National figures from Sweden show that boys are more likely to be delivered prematurely, accounting for 55-60% of all newborns between 23 and 32 gestational weeks. Neonatal deaths in these gestational weeks are also more common among boys. In 1993, the overall 1-year mortality rate (including all gestational weeks) in Sweden was 5.4% for boys and 4.1% for girls. The difference in infant mortality (within 1 year) is most pronounced at extremely early birth (23-24 gestational weeks) being 62% for boys compared with 38% for girls. The release of catecholamines during labour is an important defence mechanism by a hypoxic fetus.

Di Renzo, Gender Med 2007

Employment-related physical activity

- Tiring postures
- Industrial machines
- Physical exertion (prolonged standing, heavy lifting, physically strenuous, long working hours)
- Mentally unstimulating tasks
- Physically unconfortable environment
- Work-related psychological stress

REGRESSION ANAL	Odds	Lower 95% Confidence	Upper 95% Confidence		
	Contrast	Estimate	Odds Ratio	Odds Ratio	P-Value
Age (cat.)	2. Age \ge 35 vs 1. Age < 35	1.234	0.699	2.177	0.4686
BMI	2. BMI > 25 vs 1. BMI \leq 25	1.662	1.033	2.676	0.0365
Employment	1.Physical work vs 2.Intellectual work	1.947	1.182	3.207	0.0089
Diabetes Mellitus	1. Yes vs 2. No	2.286	0.942	5.544	0.0675
Chronic Arterial Hypertension	1. Yes vs 2. No	2.621	0.746	9.206	0.1327
Asthma	1. Yes vs 2. No	1.555	0.367	6.580	0.5489
Endocrinological diseases	1. Yes vs 2. No	1.420	0.594	3.396	0.4307
Congenital/acquired uterine malformations	1. Yes vs 2. No	2.660	0.602	11.745	0.1967
Previous abortion	1. Yes vs 2. No	1.954	1.162	3.285	0.0116
Previous PTLs	1. Yes vs 2. No	3.412	1.342	8.676	0.0099
Previous caesarean section	1. Yes vs 2. No	2.904	1.066	7.910	0.0371
Previous pregnancies <1year before current delivery	1. Yes vs 2. No	0.919	0.398	2.124	0.8440
IVF	1. Yes vs 2. No	2.065	0.263	16.223	0.4906
Cigarette smoking	1. Yes vs 2. No	1.340	0.702	2.557	0.3746
Amniocentesis/Villocentesis	1. Yes vs 2. No	1.006	0.540	1.875	0.9845
					24

RESEARCH ARTICLE

Cross-Country Individual Participant Analysis of 4.1 Million Singleton Births in 5 Countries with Very High Human Development Index Confirms Known Associations but Provides No Biologic Explanation for 2/3 of All Preterm Births

David M. Ferrero¹, Jim Larson¹, Bo Jacobsson^{4,13}, Gian Carlo Di Renzo^{3,10}, Jane E. Norman⁸, James N. Martin, Jr.⁶, Mary D'Alton⁷, Ernesto Castelazo³, Chris P. Howson², Verena Sengpiel⁴, Matteo Bottai⁹, Jonathan A. Mayo⁵, Gary M. Shaw⁵, Ivan Verdenik¹¹, Nataša Tul¹¹, Petr Velebil¹², Sarah Cairns-Smith¹, Hamid Rushwan³, Sabaratnam Arulkumaran³, Jennifer L. Howse², Joe Leigh Simpson²*

PLOS ONE | DOI:10.1371/journal.pone.0162506 September 13, 2016

FIGO Preterm Birth Individual Odds Ratio							
RTENATONI, FICERATON Ovnecology a obstetrica	Czech Republic	New Zealand	Slovenia	Sweden			
Prior Preterm	6.2	5.7	4.6	6.0			
Preeclampsia	4.8	3.4	2.8	5.7			
Diabetes	3.4		1.9	3.6			
Hypertension			2.1	1.7			
Age > 40	1.6	1.3	1.6	1.4			
Age 35-40	1.4	1.2	1.2	1.2			
Nulliparity	1.5	1.4	1.6	2.1			
Smoking	1.3	1.5	1.3	1.3			
Education, low	1.4		1.2	1.2			
Male Sex	1.2	1.2	1.2	1.1			

PART 1: IDENTIFICATION OF TRUE PRETERM LABOUR

Since preterm labour is not a disease, but rather an "event", it may be more appropriate to replace the term "diagnosis" with the term "identification" in this context

Prediction of PTB in Symptomatic Women Biochemical and Biophysical Methods Overview

Cervix or vagina Bacterial vaginosis IL-6 IL-8 IL1β fetal fibronectin (fFN) ferritin α-fetoprotein Placental alpha microglobulin-1 (PAMG-1) human chorionic gonadotropin prolactin C-terminal propeptide of procollagen pIGFBP-1 **Cervical length (TVUS)** EMG Maternal BMI

Previous History

defensins **IL-6** IL-8

Amniotic fluid

calgranulins

<u>Saliva</u>

oestriol

Serum G-CSF ferritin defensins calgranulins IGF BP-1 fragment relaxin Vitamins and micronutrients CRP, CD163

Prediction of PTB in Symptomatic Women Abnormal Cervix / Cervical Shortening

Uterocervical angle: a novel ultrasound screening tool to predict spontaneous preterm birth

Test characteristics of uterocervical angle and cervical length for prediction of spontaneous preterm birth <34 weeks

Parameters	Sensitivity	Specificity	Positive predictive value	Negative predictive value	Positive likelihood ratio	Negative likelihood ratio
UCA >105 degrees	81% (0.66-0.91)	65% (0.64-0.65)	10% (0.08–0.11)	99% (0.98-0.99)	2.3	0.29
$CL \leq 25 \text{ mm}$	19% (0.093-0.31)	98% (0.97-0.98)	29% (0.14-0.47)	96% (0.96-0.97)	8.3	0.83
P value	<.001	<.001	<.001	<.001		
UCA $>$ 105 degrees <i>or</i> CL \leq 25 mm	63% (0.47-0.76)	65% (0.64-0.65)	7% (0.057-0.093)	97% (0.96-0.98)	1.8	0.57
UCA $>$ 105 degrees and CL \leq 25 mm	23% (0.13-0.33)	98% (0.98-0.99)	48% (0.27-0.68)	97% (0.96-0.97)	19	0.78
(95% Confidence interval).						
CL, cervical length; UCA, uterocervical angle.						

Dziadosz et al. Uterocervical angle screen. Am J Obstet Gynecol 2016.

Dziadosz M. AJOG 2016

WHICH BIOMARKER IS MOST USEFUL?

Does the location of the biomarker matter?

Fetal fibronectin (fFN) is a "glue-like" protein that holds the developing baby in the womb.¹

Phosporylated Insulin Growth Factor Receptor Binding Protein-1 (phIGFBP-1) is is found in high concentrations in the choriodecidual interface.²

Placental Alpha Microglobulin-1 (PAMG-1) is a placental protein that is released into the amniotic cavity.³

As a result, the release of fFN and phIGFBP-1 into the vaginal cavity can be caused by digital examinations or manipulation of the cervix. Because PAMG-1 is not known to be found in the extracellular matrix, it may not be as easily released due to such manipulations.

Prediction of PTB in Symptomatic Women Cervical Length (<25 mm) via Transvaginal Ultrasound

	US Cervicometry test (<25mm)
Total patients	96
Patients with preterm birth (≤34 wks)	18
Patients with term birth	78
ТР	16/18
FN	2/18
TN	40/78
FP	38/78
Sensitivity (%)	88,9
Specificity (%)	51,3
PPV (%)	29,6
NPV (%)	95,2
Efficiency (%)	58,3
	DI RENZO et al. Min Gin 2011

K CATEGORIES	BASED ON fFN CONCENTI
Risk categories	fFN concentrations
1 - Low	< 10 ng/ml
2 - Lower Middle	10 - 49 ng/ml
3- Middle	50 - 199 ng/ml
4 - Upper Middle	200 - 499 ng/ml
5 - High	≥ 500 ng/ml

RESULTS

DISTRIBUTION OF SPONTANEOUS BIRTH WITHIN fFN PREDEFINED PTB RISK CATEGORIES, BEFORE AND AFTER 34 WEEKS' GESTATION

		1-Low	2-Lower Middle	3-Middle	4-Upper Middle	5-High
		(<10 ng/ml)	(10-49 ng/ml)	(50-199 ng/ml)	(200-499 ng/ml)	(≥ 500 ng/ml)
Patients n		n (%)	n (%)	n (%)	n (%)	n (%)
delivery < 34 weeks' gestation	12	1 (8.3%)	1 (8.3%)	2 (16.7%)	3 (25.0%)	5 (41.7%)
delivery > 34 weeks' gestation	114	47 (41.2%)	31 (27.2%)	24 (21.1%)	11 (9.6%)	1 (0.9%)

> 83.4% of women who delivered before 34 weeks of gestation was within categories 3-Middle, 4–Upper Middle and 5–High (fFN \geq 50 ng/ml), (P <0.001).

 \succ 68.4% of women who delivered after 34 weeks of gestation was within categories 1-Low, and 2-Lower Middle (fFN \leq 50 ng/ml), (P <0.001).

Di Renzo et al JPM, 2016

RESULTS PREDICTION OF PTB AT < 34 WEEKS' GESTATION						
	1-Low	2-Lower Middle	3-Middle	4-Upper Middle	5-High	
	(<10 ng/ml)	(10-49 ng/ml)	(50-199 ng/ml)	(200-499 ng/ml)	(≥ 500 ng/ml)	
Negative Predictive Value, %	/	97.9	97.5	96.2	94.2	
95% C.I.	/	93.9-102	94.1-100.9	92.6-99.9	90-98.4	
Positive Predictive Value, %	9.5	14.1	21.7	40	83.3	
95% C.I.	4.4-14.6	6.4-21.8	9.8-33.7	18.5-61.5	53.5-113.2	
High NPV > 90%. PPV increases with increasing fFN concentrations.						

Prediction of PTB in Symptomatic Women Initial Evaluation of PartoSure (PAMG-1)

- The study population consisted of 101 consecutively recruited pregnant women with singleton pregnancies between 20+0 and 36+6 weeks of gestation with symptoms of preterm labor, clinically intact amniotic membranes, and minimal cervical dilatation (≤3 cm).
- A positive PartoSure test in patients presenting with symptoms of preterm labor, intact membranes, and minimal cervical dilatation (≤3 cm) indicated spontaneous preterm delivery will occur within 7 days with a high degree of accuracy. A negative result indicated that spontaneous preterm delivery within 14 days is highly unlikely.

TTD (days)	NPV	PPV	SN	SP
	(95% Cl) ^a	(95% CI) ^a	(95% CI) ^a	(95% CI) ^a
≤7	97.4%	78.3%	90.0%	93.8%
	(91.0%-99.7%)	(56.3%-92.5%)	(68.3%–98.8%)	(86.2%–98.0%)
≤14	93.6%	87.0%	80.0%	96.1%
	(85.7%-97.9%)	(66.4%-97.2%)	(59.3%-93.2%)	(88.9%–99.2%)

*The Clopper-Pearson procedure computed 95% confidence intervals (Cl). NPV=negative predictive value, PPV=positive predictive value, SN=sensitivity, SP=specificity.

Nikolova T, Bayev O, Nikolova N, Di Renzo GC. Evaluation of a novel placental alpha microglobulin-1 (PAMG-1) test to predict spontaneous preterm delivery. J Perinat Med. 2014 Jul;42(4):473-7.

PAMG-1 h	nas Superior	Performance	Across	Studies
----------	--------------	-------------	--------	----------------

Prediction of preterm delivery within 7 days in patients with threatened preterm labour

Study	Year	Ν	PPV (%)	NPV (%)
Nikolova et al. ¹	2014	101	78%	97%
Nikolova et al. ²	2015	203	76%	96%
Lotfi et al. 3	2015	150	75%	98%
Heverhagen et al.4	2015	64	100%	94%
Bolotskih et al. ⁵	2015	49	75%	100%
Van Holsbeke et al.6	2015	87	75%	96%
Lou et al. ⁷	2016	65	100%	100%

Nikolova et al. J Perinat Med. 2014 Jul;42(4):473-7.
 Nikolova et al. J Perinat Med. 2015 Jul;43(4):355-402.
 Si Loffi et al. J. Perinat. Med. 2015; 43 (S1): 250.
 Heverhagen et al. J. Perinat. Med. 2015; 43 (S1): 240.
 Sobeshib et al. Scientific and Practical Journal of Obs and Gyn Russian Fed. 2015; 2-84-88.
 Van Ibobs Bio et al. Ultrasound in Mosteritica & Agrineology 2016; 45 (S1): 54.
 Loue et al. B)GG An Intermethonal Journal of Obstetrics and Gynaecology. 2016; 123 (S2): 89.

NEW Prediction of PTB in Symptomatic Women

Stratification of cervical length measurement in the prediction of imminent spontaneous delivery in women symptomatic of preterm labor

	CL	CL	CL
	< 15 mm	15- 30 mm	> 30 mm
% of the total population	6% (3/49)	85% (42/49)	8% (4/49)
PartoSure (PAMG-1) +	100%	2% (1/42)	0
PartoSure (PAMG-1) -	0	98% (41/42)	100%
Delivery within 7 days	67% (2/3)	2% (1/42)	0
PartoSure positive in women, delivered within 7 days	100%	100%	N/A

For patients with 15 mm < CL > 30 mm:

•100% pts with a (+) PartoSure (PAMG-1) test delivered within 7 days •100% pts with a (-) PartoSure (PAMG-1) test did not deliver within 7 days

Bolotskikh V.M. 2014

PREVENTION: IN WHICH CASES?

Pro	ogesterone: Maintains pregnancy
1	Modulates maternal immune response
	Druckmann R, et al. J Steroid Biochem Mol Biol. 2000 Szekeres-Bartho J, et al. Int Immunopharmacol. 2001 Di Renzo GC, et al. Gynec Endocrinol. 2012
2	Suppresses inflammatory response
	Schwartz N, et al. Am J Obstet Gynecol. 2009
3	Reduces uterine contractility
	Fanchin R, et al. Hum Reprod. 2000
	Perusquia M, et al. Life Sci. 2001 Chanrachakul B, et al. Am J Obstet Gynecol. 2005
4	Improves utero-placental circulation
	Liu J,et al. Mol Hum Reprod. 2007 Czajkowski K, et al. Fertil Steril. 2007

	15 infants		
ebo for wo	omen with a	past his	tory of
6 studies	N =1453	RR 0.50	[95% CI 0.33 to 0.75)
5 studies	N = 602	RR 0.31	[95% CI 0.14 to 0.69)
10 studies	N =1750	RR 0.55	[95% CI 0.42 to 0.74)
4 studies	N = 692	RR 0.58	[95% CI 0.42 to 0.79)
3 studies	N = 633	RR 0.40	[95% CI 0.18 to 0.90)
3 studies	N =1170	RR 0.30	[95% CI 0.10 to 0.89)
6 studies	N =1453	RR 0.45	[95% CI 0.27 to 0.76)
3 studies	N = 389	RR 0.24	[95% CI 0.14 to 0.40)
		Statistica	ally significant reductio
1 study	N= 148	MD** 4.47	[95% CI 2.15 to 6.79)
1	ebo for wo	ebo for women with a 6 studies N = 1453 5 studies N = 602 10 studies N = 1750 4 studies N = 692 3 studies N = 1170 6 studies N = 1453 3 studies N = 389 1 study N = 148	ebo for women with a past his 6 studies N = 1453 RR 0.50 5 studies N = 602 RR 0.31 10 studies N = 1750 RR 0.55 4 studies N = 692 RR 0.58 3 studies N = 1170 RR 0.40 3 studies N = 1453 RR 0.40 3 studies N = 1453 RR 0.42 1 study N = 148 MD** 4.47

Preterm birth	Singleton pregnancies (n=24)			Twin pregnancies (n=46)		
	Pessary (n=12)	No pessary (n=12)	Significance* (n=23)	Pessary (n=23)	No pessary	Significance*
<28 weeks (n,%) <32 weeks (n,%) <36 weeks (n,%)	0 0 0	2 (17 %) 3 (25 %) 6 (50 %)	ns ns p<0.001	0 0 8(35%)	1 (4 %) 7 (30 %) 12 (52 %)	ns p<0.001 ns
Interval (days, mean/ range) between TVS before treatment or controls and delivery	99 (70–134)	67 (2-130)	p=0.0184	85 (43–129)	67 (21–100)	p=0.001
Gestational age (weeks+days) at delivery (mean/ range)	38 (36+6-41)	33+4 (26-38)	p=0.02	35+6 (33-37+4)	33+2 (24+4-37+2)	p=0.02

DDEVENTION OF DD DECCADY

PREIS School Permanent International and European School In Perinatal, Neonatal and Reproductive Media	cine	Challenges in preterm birth prevention and management Pessary: short cervix				
Articles Cervical pessary in pregnant women with a short cervix (PECEP): an open-label randomised controlled trial (N=385) 385 pregnant with a cervix < 25 mm were randomly assigned to pessary (n=192) or expectant management (n=193). The primary outcome was spontaneous PTD <34 wks.						
Pessary gro (<i>n</i> = 190)	Expectant group) (n = 190)	Pessary prevent PTB in a population				
	Sp birth < 34 wks	screened for CXL assessment at the				
6.3%	26.8%	midtrimester scan.				
		Goya <i>et al</i> , Lancet . 2012; 379:1790.				

Vaginal proge short cervix i	esterone in the mi F	in wor idtrimes PTD (N=	nen w ster u :775)	rith an ayı Itrasound	npto dec	omatic rease
		No. of events/total no.				
Outcome	No. of trials	Vaginal progesterone	Placebo	Pooled RR (95% CI)	l² (%)	NNT (95% CI)
Respiratory distress syndrome	5	25/411	52/416	0.48 (0.30-0.76)	0	15 (11–33)
Intraventricular hemorrhage	5	6/411	9/416	0.74 (0.27-2.05)	0	_
	5	8/411	15/416	0.55 (0.26–1.19)	43	-
Neonatal death			101/416	0 75 (0 59_0 94)	0	14 (8–57)
Neonatal death Admission to NICU	5	85/411	121/410	0.70 (0.03-0.34)	0	
Neonatal death Admission to NICU Mechanical ventilation	5 5	85/411 35/411	51/416	0.66 (0.44–0.98)	0	24 (15–408)
Neonatal death Admission to NICU Mechanical ventilation Congenital anomaly	5 5 7	85/411 35/411 30/1967	51/416 34/1954	0.66 (0.44–0.98)	0	24 (15–408)

...and this reduction has been translated to improvement of morbidity and mortality in these babies

METANALYSIS: SHORT CERVIX & VAGINAL NATURAL PROGESTERONE

PRE Scho	IS ol	Drior DTD on	d obort oon iv			
European School in Perinatal, Neonatal and Reproductive Medicine						
AJOG Sentist ALC	Vaginal progesterone vs cervical ce of preterm birth in women with a su previous preterm birth, and singleto review and indirect comparison me	rclage for the prevention onographic short cervix, on gestation: a systematic taanalysis				
 Control Control C		Cerclage	Progesterone			
	Del <35 wks	↓ 33%	↓ 41%			
	Composite morbidity Perinatal mortality	↓ 40% ↓ 35%	↓ 70% ↓ 27%			
	The selection of the optimal treatment may depend upon adverse events, cost and patient/clinician preferences.					
		Conde-Agudelo, eta al.	AJOG. 2013 Jan;208: 1-42.			

Twins and short cervix

BJOG. 2015; 122:27-37.

Romero R et al. Ultrasound Obstet Gynecol 2017; 49(3): 303-14

Conclusions and implications Cervical pessary could have potential value as a treatment for high risk SPB patient, could be beneficial in pregnant women with a short cervix carrying twins regardless of their obstetric history, and may reduce the risk of SPB in nulliparous women. The pessary is an affordable, safe, and a reliable alternative for preventing SPB in a population of appropriately selected at-risk twin pregnancies previously screened by CL assessment at the midtimester scan.

Challenges in preterm birth prevention and management Strategy in the prevention FIGO COMMITTEE REPORT Best practice in maternal-fetal medicine FIGO Working Group on Best Practice in Maternal-Fetal Medicine 1 FIGO recommendations regarding the use of TVS CxL and vaginal progesterone for the prevention of PTB All pregnant women with a singleton gestation. Population Recommendation Tranvaginal sonographic cervical length measurement at 19-23 6/7 weeks for all pregnant patients. Vaginal progesterone administered to women with a cervical length \leq 25 mm. 200 mg vaginal soft capsules or 90 mg vaginal gel of micronized progesterone can be used for treatment. Time using Treatment should begin at the time of the diagnosis of a short progesterone cervix until 36 6/7 weeks, labor, or rupture of membranes. Risk assessment Transvaginal sonographic cervical length on all patients regardless of obstetrical history. When a transvaginal ultrasound is not available other devices Other recommendation may be used as a screening tool to measure objectively and reliably the cervical length. International Journal of Gynecology and Obstetrics xxx (2014) xxx-xxx

J Mat Fet Neon Med 2016

Comparison of Strategies used for Screening in Medicine

Test	Number needed to screen
Pap Smear for Cervical Cancer ¹	1140
Mammography more than 50 years ¹	543
Mammography between 40 and 49 years ¹	3125
Prostate-specific Antigen for Prostate Cancer ²	1254
Ultrasound cervical length to prevent one case of PTB < 33 weeks (<25 mm) ³	357
Ultrasound cervical length to prevent one case of neonatal morbidity/mortality (<25 mm) ³	218
	1. Gates TJ, et al. Am Fam Physician 2001;

Romero R, Conde A, Number needed to screen

Gates TJ, et al. Am Fam Physician 2001;63:513-22
 Loeb S, et al. J Clin Oncol 29:464-467
 Romero R, Conde-Agudelo A, unpublished.

Comparison with other Interventions in Perinatal Medicine/Obstetrics

Intervention	To prevent:	RR (95% CI)	NNT (95% CI)
Magnesium sulfate	Eclampsia	0.41 (0.29-0.58)	100 (50-100)
Magnesium sulfate	Cerebral palsy	0.69 (0.55-0.88)	52 (31-154)
Antenatal	RDS	0.66 (0.59-0.73)	11 (9-14)
corticosteroids	Neonatal death	0.69 (0.58-0.81)	22 (16-36)
Vaginal progesterone in	Preterm birth <33 weeks	0.55 (0.33-0.92)	14 (8-87)
short cervix	RDS	0.39 (0.17-0.92)	22 (12-186)

NNT: Number Needed to Treat

GRAZIE

merc	i	gracias	thank you	谢谢	DZIĘKUJEMY	
děk	uji	م	תודה	tack	ょう どうも	
obrig	gado	так	Баярлалаа	hval	a	
с	houk	rane	shokran		kiitos	
dank	е	ka	m	спас	иоо	
	고맙습니다 o 감사합니다. köszönöm					
ευχαριστώ dhanyavad blagodaram						
www.preischool.com						